In-situ time-of-flight neutron imaging of NiO-YSZ anode supports reduction under influence of stress. Authors

نویسندگان

  • Luise Theil
  • Małgorzata G. Makowska
  • Markus Strobl
  • Erik M. Lauridsen
  • Saurabh Kabra
  • Anton Tremsin
  • Henrik L. Frandsen
  • Luise Theil Kuhn
چکیده

This work reports on in-situ macroscopic scale imaging of NiO-YSZ reduction under applied stress – a phase transition taking place in solid oxide electrochemical cells in reducing atmosphere of hydrogen/nitrogen mixture and at operation temperatures of up to 850 oC. This process is critical for the performance and lifetime of the cells. Energy resolved neutron imaging was applied to observe the phase transition directly with time and spatial resolution. We present two different approaches for using this imaging technique for the investigation of chemical and physical processes requiring controlled atmosphere and elevated temperature. The first type of measurement is based on alternating stages of short-term partial chemical reaction and longer neutron image acquisition, and the second type is a real in-situ neutron imaging experiment. Results of applying energy resolved neutron imaging with both approaches to the NiO-YSZ reduction investigation indicate enhancement of the reduction rate due to applied stress, which is consistent with the results of our previous research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor

The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in A...

متن کامل

Influence of Treatment Temperature on Microstructure and Properties of YSZ–NiO Anode Materials

The cyclic treatment technique (redox cycling) comprising stages of material exposition in reducing and oxidizing high-temperature environments and intermediate degassing between these stages has been developed to improve the structural integrity of YSZ-NiO ceramic anode substrates for solid oxide fuel cells. A series of specimens were singly reduced in a hydrogenous environment (the Ar-5 vol% ...

متن کامل

Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ

In this study, the effects of calcination and milling of 8YSZ (8 mol% yttria stabilized zirconia) used in the nickel-YSZ anode on the performance of anode supported tubular fuel cells were investigated. For this purpose, two different types of cells were prepared based on a Ni-YSZ/YSZ/Nd2NiO4+δ-YSZ configuration. For the anode preparation, a suspension was prepared by mixing NiO and YSZ in a ra...

متن کامل

3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode per...

متن کامل

Preparation of NiO-YSZ/YSZ bi-layers for solid oxide fuel cells by electrophoretic deposition

A simple and cost-effective method, starting with electrophoretic deposition (EPD) on a carbon sheet, has been developed for preparation of a iO-YSZ anode and thin, gas-tight YSZ electrolyte layer on it for use in solid oxide fuel cells (SOFCs). The innovative feature of this approach nables the deposition of anode materials as well as the YSZ electrolyte, which were subsequently co-fired in ai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017